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Abstract

It has been said that the cell is the test tube of the twenty-first century.
If so, the theoretical tools needed to quantitatively and predictively
describe what goes on in such test tubes lag sorely behind the stun-
ning experimental advances in biology seen in the decades since
the molecular biology revolution began. Perhaps surprisingly, one
of the theoretical tools that has been used with great success on prob-
lems ranging from how cells communicate with their environment
and each other to the nature of the organization of proteins and lipids
within the cell membrane is statistical mechanics. A knee-jerk reaction
to the use of statistical mechanics in the description of cellular pro-
cesses is that living organisms are so far from equilibrium that one
has no business even thinking about it. But such reactions are proba-
bly too hasty given that there are many regimes in which, because of
a separation of timescales, for example, such an approach can be a use-
ful first step. In this article, we explore the power of statistical mechan-
ical thinking in the biological setting, with special emphasis on cell
signaling and regulation. We show how such models are used to make
predictions and describe some recent experiments designed to test
them. We also consider the limits of such models based on the relative
timescales of the processes of interest.
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“Everything flows, nothing stands still.” — Heraclitus

1. EQUILIBRIUM IN A DYNAMIC WORLD

The mathematics that Newton invented in bringing us the modern conception of physics was
fundamentally focused on change. Indeed, dynamics is one of the most cherished of topics in the
physical sciences. But a strong case can be made that many of the most interesting examples of such
change are those exhibited in the living world. Whether we watch time-lapse images of a growing
vine as it encircles the branch of another plant, the synchronous and stereotyped embryonic de-
velopment of hundreds of frog eggs engaged in their rhythmic progression toward a recognizable
animal, or our own slow but unmistakable evolution revealed by a look in the mirror over the
years as we see our aging frames, a sad reminder of Longfellow’s musings,

Art is long, and Time is fleeting,

And our hearts, though stout and brave,
Still, like muffled drums, are beating
Funeral marches to the grave. . .,

it is clear even to the superficial observer that in life, all is change.

But how are we to come to terms with biological change? In this Annual Reviews series,
Hopfield (1) gives us a fascinating account of his own first attempts at teaching biological
physics and the question of how to handle the clear dynamism of living systems that goes well
beyond the description offered here. The perhaps surprising tenet of this article is that even in the
complicated, busy world of life, there are many circumstances in which we can make much
progress, all the while invoking what at first blush look like strictly equilibrium notions. A
colleague tells of hearing a seminar that invoked simple ideas from statistical mechanics to try
and understand the distributions of regulatory proteins across genomic DNA. A noted biologist
barked out “Napoleon is in equilibrium,” the message being that ideas from equilibrium
thermodynamics and statistical mechanics have no place in the study of living matter. There are
problems with such a reaction on several fronts, namely, (a) that everyone does it; nearly every
time we see histograms of protein binding occupancies on DNA from sequencing data there is
a hidden occupancy assumption in play and at the very least, it is worth determining the limits
and validity of the equilibrium occupancy null hypothesis and (b) depending upon the relative
timescales of the processes of interest, sometimes equilibrium (or steady-state) ideas are de-
monstrably a defensible and useful quantitative approach. The argument presented in this
review is that the subject is more nuanced than the apparently damning remark made by the
noted life scientist and that the sometimes unreasonable effectiveness of equilibrium ideas makes
for an interesting subject in its own right.

1.1. The Cell as the Test Tube of the Twenty-First Century

Test tubes conjure images of remaking nature rather than taking it as we find it. In test tubes, we
mix together the components we have hypothesized will interact in some interesting way, we tailor
the environment (for example, the temperature and pressure) to suit our needs, and we measure the
time evolution of the reactants and products as they move toward their terminal privileged state of
equilibrium. But how might we take the cells of living organisms and remake them in such
a controlled way? Implementation of this program of remaking living cells had to await the ge-
nomic revolution of modern molecular biology, a revolution that made it possible to not only read
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the information content of genomes at will but, even more impressively, to rewrite it to our own
purposes (2). Itis now the province of the field of synthetic biology to remake cells, reprogramming
their genes so that cells light up with fluorescence where and when we want, knocking out their
genes one by one at will, and rewiring their genetic networks to make switches and oscillators of all
kinds from scratch (3-6).

The way synthetic biology can drive physical biology has many parallels with the way that
materials science has fueled advances in condensed matter physics through the production of new
classes of materials. Using the tools of genetic engineering, whole new classes of living materials
can be produced, making it possible to ask new and precise questions about biological phenomena
in organisms ranging from the simplest of bacteria to the yeast cells that make some of our de-
licious foods and beverages possible to the flies that circle over those foods in our kitchens. Indeed,
freakish mutant flies have been synthesized Frankenstein-like with photoreceptors from the eyes
growing on parts of the body where they would never belong (7). But this is more than just parlor
tricks. By rewiring cells to exploit a technique known as optogenetics, in which light is used to
control the state of activity of a given molecule, it is now possible to drive cellular decision making
with nearly arbitrary temporal histories (8—10). By rewiring biology, we understand it in ways that
are not possible if we simply take it as evolution has left it, effectively delivering on the promise of
turning cells (and even entire multicellular organisms) into test tubes.

One of the reasons that the question of how to model the dynamics of the many molecular
processes that animate cells is so timely is that the experimental state of the art has reached the
point at which, thanks to the synthetic biology revolution, reproducible, quantitative mea-
surements are becoming routine. For example, studies on cell signaling have reached the point
at which the response function of cells subjected to time-varying perturbations, such as osmotic
stresses or chemoattractants, can be measured directly (11-15). Using microfluidics in con-
junction with fluorescence microscopy, it is now possible to measure the time history of a variety
of molecular readouts to perturbations, such as temporal changes, in the presence of che-
moattractant or time-varying alterations in the osmolarity of the cellular medium. Another class
of input-output functions that has been characterized in great detail are those associated with
the processes of the central dogma of molecular biology (see Figure 1), namely, transcription
(i.e., the production of mRNA molecules) and translation (i.e., the synthesis of new proteins), as
they occur throughout the cell cycle (17-21). It is the theoretical description of the dynamics of
the central dogma that forms the centerpiece of this article, with special reference to the process
of transcription.

In my view, one of the most important insights to emerge from the quantitative study of the
physical world is the ability to construct effective theories that make no explicit reference to the
fundamental constituents at smaller scales. Atomic physicists treat the nucleus as a point
particle with no internal degrees of freedom. More blatantly, elastic theories of solid materials
and hydrodynamic theories of fluids ignore molecular reality altogether, although the material
parameters, such as elastic moduli or viscosities, that show up in such theories can be computed
by appealing to this molecular reality. When first learning about these continuum theories, we
are often instructed to think of a control volume that is large on the scale of individual atoms
or molecules and to imagine states of deformation within materials that are long wavelength
with respect to atomic dimensions (22). But interestingly, these kinds of descriptions often
work on much smaller scales than one might expect strictly on the basis of the control-volume
picture (23).

To my mind, one of the most important scientific challenges we face in coming to terms
with the sometimes dazzling complexity of biological systems is figuring out just how far we
can go down this same path of constructing effective theories that self-consciously root
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The pathway from DNA to protein. When a gene is on, the protein molecular copying machine known as
RNA polymerase translocates along that gene, producing an mRNA template of that gene. This mRNA
template is then read by the molecular machine known as the ribosome, which produces a polypeptide chain by
stringing together amino acids in accordance with the triplets of codons specified by the mRNA. Adapted from
Reference 16.

Figure 1

out some features of the problem. Such theories are sometimes viewed with suspicion in bi-
ology, passingly referred to as just phenomenological, and hence the challenge is to show
how they can be used to generate falsifiable predictions that could not have been arrived
at from the first-principles perspective in much the same way that the beautiful patterns, such
as convection cells seen in clouds, are not usually described on the basis of molecular
dynamics.

In the remainder of this article, we explore the limits and validity of equilibrium thinking in
informing one particular set of questions in cell biology: What are the mechanisms whereby
cells make decisions? However, the same strategy advocated here should be viewed as being
relevant in a host of other contexts, ranging from the rules governing the opening and closing
of ion channels in response to various environmental stimuli to the induction of signaling
cascades when bacteria detect chemoattractants in their environment to the reprogramming
of cells between different cell fates. Statistical mechanics’ great promise was as a way to deal
with complicated systems of many particles. How far can we take those ideas in thinking about
the messy and complicated network of molecular interactions within a cell?

Note also that this article is much more about providing a point of view than it is about sur-
veying a vast and deep literature. The works I have cited have been chosen as representative and
not with the ambition of assigning priority and recounting the history of this enormous field. Tam
fully cognizant of the many important contributions that have not been included and encourage
interested readers to use the references provided here as a jumping-off point for a more rigorous
examination of the vast and interesting literature.
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2. GENE REGULATION AND STATISTICAL PHYSICS
2.1. How Cells Decide

One fertile arena for exploring the question of how to come to quantitative and predictive terms
with the complexity of biological systems centers on perhaps the most unique feature of living
matter, namely, the genome. As every high school kid now learns, genetic information is stored in
the enormous DNA molecules making up the chromosomes of a given organism. These chro-
mosomes, in turn, are partitioned into collections of bases that are the molecular incarnation of the
abstract particles of inheritance introduced by Mendel and are known as genes, with each gene
starting with a so-called start codon (ATG) and ending with one of several possible stop codons. In
a simple bacterium such as Escherichia coli, which has a genome of roughly 5 X 10° base pairs, we
can estimate the number of genes by noting that a typical protein in a bacterium has a length of
roughly 300 amino acids and that it takes three nucleotides (i.e., A, T, G and C) to code for each
such amino acid through the famed genetic code. This means that roughly 1,000 base pairs are used
to code for each protein and hence that the 5 X 10° base pairs of the genome can be used to code for
roughly 5,000 contiguous genes.

But how are these genes actually accessed and turned into physiological responses? This
takes place through the expression of those genes in the process of transcription, in which RNA
polymerase (RNAP) [~ 10°~10* copies per cell (24)] reads the sequence of nucleotides on the
DNA molecule and synthesizes a corresponding mRNA molecule as highlighted in the top part
of Figure 1. Indeed, one of the signature achievements of modern molecular biology (and I
would go further and say in the entire history of science) was the determination of the steps,
often known as the central dogma of molecular biology, leading from DNA to active proteins.
However, beautiful experiments of many different types, whether in single-celled bacteria or the
multicellular collection known as a human being, tell us that under normal circumstances only
a limited battery of these genes are actually on and being used to synthesize new proteins. The
transcription process in bacteria occurs after RNAP binds to a region in front of the gene of
interest known as a promoter.

One of the ways control is exercised over the transcription of a given gene is via a process
known as transcriptional regulation. In this process, batteries of proteins known as transcription
factors bind to the DNA and either tune down (repression) or tune up (activation) the level of
expression of some gene of interest. These transcription factors are, therefore, themselves the
products of gene expression, implying that there are interesting networks featuring feedback
between protein synthesis and regulation. The question of how the decision about which genes are
on is made is of critical importance in a broad array of topics, ranging from the development of an
egg to an embryo to the unchecked proliferation of cells in the growth of a tumor. We use this
question of cellular decision making as our entry into the question of how statistical mechanics can
be used in the service of answering biological questions.

2.2. Thermodynamic Models of Gene Regulation

Our starting point for thinking quantitatively about the transcription process is to consider the
kinetics of mRNA production. In particular, we are interested in the time evolution of the mRNA
census as a result of the key dynamical processes, such as transcription itself and mRNA degra-
dation. Specifically, we imagine a collection of N cells as shown in Figure 2 at time # in which each
cell harbors a certain number of mRNA molecules. This distribution of mRNA molecules
throughout our collection of cells can be represented by the histogram shown at the top of Figure 2.
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Transcription process resulting in change in mRNA census between times # and # + At. The schematic histogram
shows the distribution of the number of mMRNA molecules found per cell. We refer to the average number of mRNA at
time # as m(t); it is found by adding up the total number of mRNA over all cells and dividing by the number of cells.
The number of mRNA per cell increases because of transcription and decreases because of mMRNA degradation.

By summing up all of the mRNA molecules in all of the cells M = ",m;, we can now find the
average number of mRNA molecules per cell as

(my = %, 1.
which, for simplicity of notation, we label as 172(#) without the {(72) symbols that make the averaging
process explicit.

The time evolution of the probability distribution p(m1, t) can be worked out using a chemical
master equation that acknowledges these different transcriptionally active states (25-30). Such
equations, in turn, can be used to generate dynamical equations for the mean number of mMRNA per
cell. Given that the average amount of mRNA per cell at time # is 71(¢), the amount a small time
increment later, At, is as seen in Figure 2 given by
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m(t + At) = m(t)—number of mMRNA degraded + number of mRNA produced. 2.

To make further progress, we must be able to write the degradation and production terms ex-
plicitly. To that end, we exploit the fact that in the simplest model of degradation, at every instant
each mRNA molecule has the same probability yAt of decaying. For a gene that is under no
transcriptional control (i.e., a so-called constitutive promoter), mRNA is produced at a steady rate
(r). For genes subjected to transcriptional control, there can be a variety of transcriptionally active
states. For example, the state in which just RNAP is bound corresponds to one transcriptionally
active state, whereas a state with both polymerase and an activator molecule bound simulta-
neously can have an even higher rate of transcription. For each of the transcriptionally active states,
there is a rate, 7;, of mMRNA production, as shown in Figure 3. Given these ideas, the amount of
mRNA at time # + At can be written more formally as

(e + At) = m(r) — yAom(r) + 3 (rt)p, 3.

where v is the degradation rate and has units of time ', and p; is the probability of being in the ith
transcriptionally active state.

But what is the nature of the individual states and their probabilities? Although their explicit
calculation is the business of the thermodynamic models that are our focus below, here we note
that the probability of the ith transcriptionally active state can be thought of as

PiZPi([TFl]a[TFZL'”), 4.

where the notation indicates that this probability is a function that reflects the occupancy of the
regulatory DNA by the various transcription factors (i.e., regulatory proteins) that interact with
the regulatory apparatus of the gene of interest. Hence, each transcriptionally active state denoted
by the label i corresponds to a different state of the promoter characterized by a different con-
stellation of bound transcription factors. These ideas were first put into play carefully in the
regulatory setting by Ackers (31, 32) and coworkers and have been explored more deeply in the
meantime by a number of groups (33-37).

Activator Polymerase
\ \

r;
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2
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2 —— =
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Figure 3

Transcription rate in different states. This schematic shows the time evolution of the transcription rate of
the gene of interest as it transitions between different transcriptionally active states. The icons on the right show
that when RNA polymerase is absent, the rate is 0; when just polymerase is present, the rate is 71; and
when polymerase and activator are both present, the rate is 7,.
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It is more traditional to rewrite our equation for mRNA time evolution in the form of a dif-
ferential equation as

dm
s —Ym-i-Z:TiPi, 5.

where, as above, p; is the probability of the ith transcriptionally active state, and 7; is the rate of
transcription when the system is in that state. The individual p;s are computed based on the
occupancy of various constellations of transcription factors in the promoter region of the gene of
interest.

The simplest example of the kinds of models given above is the constitutive promoter in which
there are no regulatory interventions by transcription factors. In this case, there are only two states:
the state in which the promoter is empty and thus transcriptionally silent and the state in which the
promoter is occupied by RNAP and hence transcriptionally active with rate r. We can write the
dynamical equation for mRNA production in this case as

dm
E = =Y + "Ppound> 6.

where we can make contact with Equation 5 by noting that there is only one transcriptionally
active state such that 7y = 0 and 7, = 7, and we note that the probability of that transcriptionally
active state iS P2 = Ppound- 1he central preoccupation of the thermodynamic class of models is
how to determine the quantity ppoung, Which in the simplest version of these models refers to
the probability that RNAP is bound to our promoter of interest. But how do we compute this
probability using the tools of statistical mechanics?

Figure 4 gives a schematic view of the kinds of abstractions and simplifications we make in
thinking about the binding of proteins, such as RNAP and transcription factors, to the genome. In
particular, we imagine the genome as a linear array of N boxes (equal to the number of base pairs in
the genome), each of which is a possible binding site for the RNAP and for transcription factors. Once
we have identified the different states of the promoter of interest, our next task is to assign statistical
weights to those separate states, which is a prerequisite to our being able to write the probabilities of
those states themselves. To compute the statistical weights, we need to evaluate the energies of the
different states as shown in Figure 5. In the simplest of models, we imagine that nonspecifically bound
polymerases have energy SII)\;S < 0 and can be bound to Ny distinct sites (i.e., number of base pairs)
on the genome. When a polymerase is bound to its promoter, the corresponding energy is S‘; 4 <0.
Note that these energies are effective parameters, as discussed earlier in the paper, with the specific
binding energy more energetically favorable than the nonspecific binding energy (i.e., eg 4 < egfjs).
We have no first-principles access to these numbers because they depend upon a host of factors,
including the salt concentration, hydrophobic interactions, van der Waals interactions, specific
contacts between residues on the proteins and bases in the DNA, etc. Hence, in much the same way
that in the Ising model we lump our ignorance of microscopics into effective coupling parameters,
here the messy business of protein-DNA interactions is subsumed in several effective parameters.

With these energies in hand, Boltzmann tells us that the way to find the statistical weight w; of
some set of configurations all having the same energy is

w; = gi(E;)e PE, 7.

where E; is the energy of that state and g;(E;) tells us how many states there are that have that
energy. The quantity g;(E;) is the multiplicity of the state with energy E; and can be computed using
combinatorial ideas like those indicated schematically in Figure 4c.
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The Boltzmann genome. (a) Schematic of a bacterial cell showing the complicated internal arrangement of the genome. (b) Abstraction
of the genomic landscape of a bacterium into a one-dimensional lattice of binding sites. (c) There are many microstates [g(E) of them]
of the P RNA polymerase molecules on the genomic DNA, and this can be evaluated combinatorially by thinking of the genome as
consisting of Nys nonspecific binding sites upon which the P RNA polymerases can be arranged.

We can implement the statistical mechanical program of determining the partition function for
a constitutive (unregulated) promoter, as shown in Figure 5. Given the statistical weights of the two
different states (i.e., unoccupied promoter and promoter occupied by RNAP), the probability of
the transcriptionally active state is given as the ratio
P, Bhey

Nns 8

1+ BB
T R

Pbound =

where Ae,; = st) = e;\‘;is. Essentially, this is nothing more than a traditional noncooperative
binding curve. As the number of RNAP molecules increases, the probability of binding saturates.

For the case of a promoter that is regulated by a single transcription factor that represses that
gene, the various categories of states of the system are shown in Figure 6. Using precisely the same
reasoning, we can compute the probability that the promoter is occupied as

P —BAe
NNS 9

1 R e—BAE‘,d _r e_BAfpd !
+ Nns + Nns

Pbound =

The new parameters that enter this expression are the number of repressors (R) and the difference
between specific and nonspecific binding of repressors given by Ae,4. If we introduce the sim-
plifying notations p = (P/Nns)e P2 and 4 = (R/Nys)e P24, then we can rewrite our ex-
pression for the gene being in the on state as

p

. 10.
1+7ra+p

Pbound =
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States and weights of the constitutive (unregulated) promoter. The transcription start site is shown by a bent arrow. The first state is
transcriptionally inactive and has the transcriptional rate r; = 0, and the second state is transcriptionally active and is assigned the
transcriptional rate , = 7.

94

From the perspective of experimental measurements on transcription, often it is most convenient
to characterize the level of expression by a comparative metric known as the fold-change. The idea
of the fold-change is to compare how much expression there is in the presence of the regulatory
machinery to that in its absence. Specifically, this ratio can be written as

pbound(R # 0) 11.

fold-change = .
8 pbound(R = 0)

For the simple repression architecture considered here, the fold-change simplifies to the form
fold-change = (1 4+74) "1, 12.

where we have invoked the so-called weak-promoter approximation, in which p <« 1. What this
tells us is that as the number of repressors gets larger (R increases), the fold-change becomes smaller
and smaller.

In order for theoretical predictions like those described above to have real meaning, there
must be a concomitant effort to construct experiments designed to explicitly test the scaling results
implied by those theories. Two of the key criteria that must be met by such measurements are
precision and reproducibility. The best treatment of the subject of reproducibility that I am aware
of is now a century old and emerged in the context of early studies on the existence of atoms. In
his classic treatise on the topic, French physicist Jean Baptiste Perrin presents a stunning table that
shows 135 distinct ways of determining Avogadro’s number (38). Again, to our way of thinking,
these are the kinds of standards that biological research needs to be held to in order for the kind
of theory-experiment interplay enjoyed by condensed matter physics to take root in the study of
living matter.

Detailed experimental exploration of the response of the simple repression architecture
(i.e., Equation 12) is shown in Figure 7, where we see that precisely the kind of scaling with the
repressor number expected from the thermodynamic framework is observed experimentally,
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Figure 6

States and weights for the simple repression regulatory architecture. The binding site for the repressor
molecule is shown as a white fragment of the genomic DNA. The first state shows the empty promoter,
the second state shows the transcriptionally active (i.e., polymerase-bound) state, and the third state is
the repressed state in which the promoter is rendered inaccessible to polymerase binding as a result of
repressor binding.

although here the readout of gene expression was the protein products of the mRNA rather than
the mRNA itself. Given that the quantity r, in Equation 12 is given by 74 = (R/Nys)e #2%, this
implies that differences in fold-change can be elicited not only by tuning the repressor number but
also by changing the strength of the repressor binding sites as reflected in the parameter A¢,4. In
particular, by changing the sequence of the repressor binding region on the DNA, a roughly 20-bp
fragment, we can tune the parameter A¢, 4. Figure 7 shows four distinct choices of the repressor-
DNA binding energy with stronger repressor-DNA binding corresponding to a more substantial
fold-change in gene expression. Note that the comparison between theory and experiment revealed
in the single-cell measurements reported in Figure 7 involves no free parameters. Specifically, the
repressor number is measured directly, and the binding energies Ae,; were determined from
a single measurement at one repressor copy number in the bulk setting, meaning that in the context
of the single-cell measurements shown in the figure, the comparison between theory and ex-
periment required nothing more than simply plotting the theoretical result of Equation 12 and the
experimental results on the same figure.
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Figure 7

Fold-change in the simple repression architecture. The y-axis shows how much less expression of the gene of
interest we get in the presence of repressors than in their absence. As the number of repressors increases,
the expression of the gene of interest is reduced even more. The different curves correspond to different binding
site strengths for the repressor on its genomic binding site. From top to bottom, the highest curve shows
the response for the weakest binding site, and the lowest curve shows the response for the strongest binding site.
The circles show the result of measuring the gene expression and repressor number using fluorescence at
the single-cell level, and the diamond shapes show the results from bulk assays in which the number of
repressors is counted using quantitative immunoblots and the level of expression is read out through the action
of an enzyme produced when the gene is on (39, 40).

2.3. Uses and Abuses of Occupancy

Interestingly, there seems to be anecdotal agreement that when writing dynamical descriptions
of the processes of the central dogma, such as transcription, the dynamics can be described by
occupancy functions, such as those presented in Equation 5. That is, in order to figure out the
level of transcription, we figure out what fraction of the time the promoter is present in each of
its transcriptionally active states and sum up the contributions from each of those states. However,
this is a hypothesis that needs to be scrutinized relentlessly. Specifically, the occupancy hypothesis
should be used to generate polarizing predictions and then experiments should be designed to put
those predictions to the test. Recent single-cell experiments have begun to do just that (41, 42).

In the previous section, we showed how by treating the occupancy from the perspective of
the Boltzmann equilibrium probabilities, we could erect the entire machinery of thermo-
dynamic models. An alternative way of viewing these same problems that begins to address
the “Napoleon is in equilibrium” objection is by appealing to the kinetic theory of transcription
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Figure 8

Effective model of kinetics of mRNA production for the simple repression regulatory motif. The promoter
transitions between the empty state (state 2 ), the repressed state (state 1), and the transcriptionally

active state (state 3 ), with rate constants denoted in the figure. When in state 3, transcription can begin, which
leads to the production of mRNA and the return of the promoter to state 2.

and working out the time evolution of the probabilities of the different states (25-30, 43, 44).
Here, to choose a specific regulatory architecture as an example, we think of the simple re-
pression motif as a chemical reaction of the form shown in Figure 8. mRNA is produced at
rate r when the system is in state 3. The three states correspond to precisely the three states
shown in Figure 6, although note that in this figure the ordering of states has been changed. The
rate constants shown in the reaction scheme dictate the frequency of switching between the
different states.

We begin with working out the kinetics of the first state, which has the promoter occupied by
the repressor molecule. As the linear reaction scheme shows, there is only one way to enter and exit
this state and that is through the empty state (state 2), resulting in the dynamical equation

% = kRp(2) — KRp(1). 13.

The dynamics of the empty state (state 2) are more complicated because this state is accessible to
both the repressor and the polymerase, meaning that the dynamics can be written as

dp(2)

= —kRp(2) + ERp(1) — K2 p(2) + K2 p(3) + mp(3). 14.
Note that the final term in this equation reflects the fact that mRNA is produced at rate r from state
3 and once mRNA production begins, polymerase leaves the promoter and hence the system goes
back to state 2. The state with polymerase occupying the promoter evolves similarly as can be seen
by writing

ap3) _ REp(2) — kP p(3) — rp(3). 13

To close the loop and come full circle to the real question of interest, namely, the production of
mRNA itself, we have

d
dL:l = —ym+1p(3). 16.
What this equation tells us is that the promoter is only transcriptionally active in the third state,
namely, that state in which the polymerase binds the promoter.

These equations can be resolved in steady state by setting the left side in each case to zero. We
begin by solving for the steady-state level of mRNA and find
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p(3)
-

17.

Mss =

But what is p(3)? In seeking the unknown steady-state probabilities, we must respect the con-
straint that the probabilities sum to one, namely,

p(D)+p2)+p3) =1. 18.

We do not go into the details of the algebra of resolving these three linear equations and simply
quote the results as

g(k’:Jrr)
p(1) = (“ )’*’7 : 19.
kE +r kR
(1)
(K2+7)
pe) = — k)l" : 20.
kP +r kli
T+ (1+@)
and
1
p(3) = ) . 21.
Tt kR
(1)

Note that with these steady-state probabilities in hand, we can in turn determine the steady-state
mRNA number. The probabilities resulting from the kinetic model are contrasted with those from
the thermodynamic model in Figure 9.

To make contact with the kinds of experiments discussed earlier and presented in Figure 7, we
have to compute the fold-change given as

-~ mss(R # 0) _ 1
fold-change = me(R=0) ) . 22.
1+ —5 1
(kf+r) KR
L+

Note that we can write kX = kR, where we have acknowledged that the on rate for the repressor
is proportional to how many repressors are present in the cell. Interestingly, we see that this
implies that the functional form of the fold-change is the same even in this steady-state context, as
it was in the thermodynamic model framework, although now at the price of having to introduce
an effective Kfiff , resulting in

fold-change = # 23.

1+ L;)
( def
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Comparison of states and weights from kinetic and thermodynamic models.

By comparing Equations 12 and 23, we see that their scaling with the repressor number is
identical. To further explore the common features between these two expressions for fold-
change, note that

kF +r
& (1 It - ))
Kff ==~ 72 24,

ki (k4r)

We can simplify this further by noting that we can write KfiR)

ff (R) <1 i (k/;:r))

kY

= kR /k_, resulting in

One conclusion to emerge from this result is that the idea of testing the thermodynamic
model, even in the case of simple repression, is more subtle than we might have thought
given that correspondence with the functional form given here could be a signature of con-
sistency either with the thermodynamic model or with the kinetic theory of transcription.
However, by using experiments to probe the intrinsic dependence of K;ﬁ on other quantities,
such as how fast polymerases leave the promoter, and on the number of polymerases, we
can begin to understand whether the apparent accord between thermodynamic models and
experiments such as those illustrated in Figure 7 reflects some more general features of
these problems that transcend the specific model implemented to describe the transcription
process (45).
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2.4. The Regulatory Playground

The ideas set up in the specific case above for the regulatory architecture of simple repression can
be used in all sorts of other settings. Indeed, as noted in the introduction, a broad range of circuits
leading to switch-like and oscillatory behavior have been mathematicized and wired up in living
cells (46-50). Several prominent and interesting examples that illustrate the framework spelled out
above are shown in Figure 10. For the cases considered here, we now focus on the dynamics of the
proteins rather than the mRNA molecules to give a flavor of the way that the same occupancy
ideas have been used in other contexts. When the words and cartoons used to describe these

Architecture Dynamical equations
: Ir:[ _(A;)
K
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Figure 10

Regulatory architectures subjected to the thermodynamic framework. The first example is the self-activating switch. The second example is
mutual repression, which leads to a genetic toggle switch. The third example is a two-component oscillator built from an activator
and a repressor. The fourth example shows a genetic oscillator known as a repressilator. Detailed descriptions of all of these architectures
can be found elsewhere (51).
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circuits are mathematicized, the resulting structure for the governing dynamics nearly in-
variably takes the form

dA
E =—vA+ rphound(A)’ 26.

where we consider the production rate of an activator molecule (A). The main point I am trying to
emphasize is the use of occupancy functions that characterize the probability of the various states
of the promoter.

Sometimes for simplicity when writing the probabilities that showed up abstractly in Equation
3, it is mathematically convenient to resort to a strictly phenomenological treatment of those
probabilities by using a so-called Hill function (52). For example, if we consider the self-activating
switch of Figure 10a, we have

n

A
il_? :_’YA+T0+7 (K{{> 79 27.

1 (&)

as shown in the first of the examples in Figure 10. The first term on the right captures the protein
degradation process, the second term reflects basal production at rate 7, and the final term reflects
the feedback of the circuit because it has the property that the more A there is, the higher the rate of
protein production. This circuit is a very nice exercise to explore how a simple dynamical equation
reflecting elementary processes of protein dynamics can give rise to switch-like behavior in the
sense that the steady-state value of the protein level can be either low or high (51).

Figure 10 shows a number of other examples, each of which can exhibit interesting dynamical
behaviors depending on the specific choices in parameter space. For example, the second example
in the figure shows a different version of a genetic switch (46, 49). Figure 10c shows an elementary
two-component oscillator in which an activator activates both itself and a repressor. The repressor,
in turn, represses the activator. For the right choice of parameters, this circuit will exhibit
oscillations (51, 53, 54). The final example is a famous example of an oscillatory circuit (47).
Again, our reason for highlighting these examples is to make it clear that the probabilistic language
of occupancy suffuses the study of regulatory decision making in vivo; hence, an important part of
trying to make the field quantitatively rigorous is to explore the limits and validity of the
probabilistic description of occupancy using Boltzmann statistics or steady-state probabilities.

3. TWO-FACED MOLECULES: THE JANUS EFFECT

3.1. Regulating the Regulators

One of the most interesting things about living organisms is that they react to environmental
cues. Bacteria can detect changes in their environment ranging from small concentration
differences in some metal atoms or ions to changes in the osmotic pressure coming from the
surrounding medium. Eukaryotic cells have similar capacities for detecting everything from
the stiffness of the substrate they are growing on to the presence of signaling molecules in their
environment. Indeed, our precious senses all rely on the ability of our cells to respond to
external stimuli.

One of the mysteries resolved by modern biology is the determination of the kinds of molecular
mechanisms that make it possible to detect and respond to all these different kinds of stimuli.
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The general idea is now just five decades old and goes under the name of allostery, and refers to
the fact that many biological macromolecules can switch back and forth between two con-
formations: an active and an inactive state (55-58). The relative probability of these two states
is controlled, in turn, by the binding of some ligand to the allosteric molecule (59, 60). In this
section of the article, we explore how these ideas can be converted into statistical mechanical
language and then applied to the problem of cellular decision making, although the scope of
the allostery concept is much broader than the limited application considered here in the
context of transcriptional regulation (59, 60).

3.2. Biology’s Greatest Model

Physics is defined by its many simple and elegant models. For mechanical systems near equilib-
rium, we invoke the harmonic oscillator model. The study of critical phenomena passes invariably
through an analysis of the Ising model. For the specific heats of crystalline solids, we turn to the
models of Einstein and Debye. The random walk model describes not only the intuitive case of
diffusion but also the statistics of polymer conformations. And the list of simple and elegant
overarching models goes on.

One of the most interesting and surprising features of these models is their broad reach. The
harmonic oscillator tells us not only about springs but also, for example, about RLC circuits and
the absorption of radiation by matter. Similarly, we use the Ising model in settings as diverse as the
study of liquid-gas transitions, of the order-disorder transition in alloys, and of magnetism. Is it
realistic to expect the same kind of broad reach for simple models in the biological setting?

Shortly after the elucidation of the allostery concept, a statistical mechanical model of allosteric
molecules was advanced that elegantly captures several of the key conceptual features present in
allosteric molecules, namely, the existence of several conformational states corresponding to the
active and inactive states as well as a different affinity for binding some control ligand when in
those different states. That model, sometimes referred to by the initials of its founders Monod,
Wyman, and Changeux (hence, the MWC model), has now been applied to a host of different
problems (57, 59-66). At roughly the same time, a second class of models was introduced that
differs in subtle ways from the MW C model, which need not concern us here because we are trying
to make a broader point about molecules that have several conformational states with different
activity (67). Here, in Section 3, I illustrate how such models work from the statistical mechanical
perspective and the kinds of things they can be used to understand.

3.3. Repression Revisited

Although the model described in the previous section tells us that a very useful control parameter is
the number of transcription factors, often both in the lab and in the real world, cells respond not by
changing the number of transcription factors but rather by changing the number of active tran-
scription factors. How does this work? One of the interesting applications of the allostery concept
in general and the MWC model in particular is to the study of transcriptional regulation. The key
point is that both repressors and activators, the molecules considered in detail in the previous
section of the paper, are often subject to environmental control by the binding of ligands to the
transcription factor. For example, imagine a repressor molecule that controls the production of
a protein that carries out an enzymatic reaction on some substrate. When that substrate is present
in high quantities, the repressor is in its inactive (i.e., ligand bound) state. However, when the
concentration of the ligand is low, it is no longer bound to the repressor molecules and hence the
repressor is active and serves to turn down the level of expression. In other words, allostery
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provides a coherent mechanism of biological feedback that can be implemented mathematically in
the context of the MWC model.

How do we turn these ideas into a statistical mechanical framework for thinking about in-
duction of genes by some downstream substrate? Figure 11 shows one approach, which is to
imagine that our collection of repressors can be separated into two populations, one of which is
active and the other of which is induced and hence less active. This means that we need to generalize
our original picture of simple repression to include two distinct classes of repressor, one corre-
sponding to the active repressor (R ) binding and the other to the reduced binding that accompanies
binding of the inducer to the repressors (R;). Clearly, we have a constraint on the total number of
repressors of the form R4 + R; = Ry, Although in principle the model allows for the repressor to
be in the active state while bound to a ligand and, similarly, to be in the inactive state, although not
bound to ligand, we adopt the simplifying assumption (exemplified in Figure 11) that the active
state of the repressor has no bound ligand and that the inactive state of the repressor occurs only
when the ligand is bound.

Using the states and weights shown in Figure 11, we can write the probability that the gene is on
as the ratio of the statistical weight of the state with polymerase bound to the sum over the
statistical weights of all states, resulting in

NL e BAg
Pon = A . 28.
14 Ra p-BAean 4 Rip—BAeg; 4 P ,—BAey
+ Nns + Nns + Nns

If we introduce the simplifying notations p = (P/Nns)e P2%d, r4 = (Ry/Nys)e P24, and
1 = (R;/Nns)e P21, then we can rewrite our expression for the gene being in the on state as

p
= 29.
Pon 14+ra+r+p

State Weight

[@b ,
Nps
Ezgj T Han
NNS
Ezgj L e
Nps

States and weights for a dual population of repressors. For the simple repression motif considered here, there
are four states of the promoter: empty, occupied by RNA polymerase, occupied by uninduced repressor,
and occupied by induced repressors.

Figure 11
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As noted earlier, in many instances, it is most convenient for the purposes of comparison of
experiments to reckon the fold-change (see Equation 11), which for this case is given by
1

fold-change = ——— 30.
147 +71

where we have once again invoked the weak-promoter approximation (p < 1).

We can simplify our analysis by making the assumption that the inactive repressors have
their K increased so much by inducer binding (i.e., Ag, 4 < Ag,4 4) that they no longer bind the
operator DNA at all (i.e., r; < 1). In this case, the expression for the fold-change simplifies to

fold-change = 31.

1474

Of course, this is more easily interpreted if written in terms of the total number of repressors and
the concentration of the inducer. To that end, we note that we can rewrite the expression as

1
fold-change = ———— 32.
pa(OR’
T+55

where we have used the fact that Ry = pa(c)R, with pa(c) itself defined as the probability of the
repressor being in the active state as a function of the concentration ¢ of the inducer. K is the
effective (dimensionless) dissociation constant of active repressors to DNA. To make further
progress, we must determine how p 4(c) depends on the concentration of the inducer (c), and this is
where the allostery models that are the subject of this part of the paper come in. Note that, as with
many of the biological applications of statistical mechanics, we invoke these ideas with a sepa-
ration of timescales in mind. That is, the binding and unbinding of the inducer from the repressor
molecule and the subsequent switching between active and inactive states is much faster than the
residence time of the repressor on the DNA once it is bound. Essentially, we imagine the
equilibration of repressor and inducer to be instantaneous when compared with the timescale over
which the repressor is bound or unbound on DNA.

We begin with the simplest model in which we imagine our repressor molecule to have one
binding site for an inducer molecule. In this setting, this means that there are four states available to
the repressor molecule, as shown in Figure 12. Specifically, there are two active states in which the
molecule can repress and two inactive states in which it is assumed to no longer bind the operator
DNA and hence cannot repress. The two states for each activity level correspond to the cases in
which the inducer is either bound or not.

Given the states and weights shown in Figure 12, we can compute the activity of the repressor
as a function of inducer concentration (c) in the form

(1+2)

pA(C):(lJr[%)Jreﬁf(lJr;;), 33.

where we introduce distinct dissociation constants K’;‘ and K(’i for the active and inactive states,
respectively. We can now substitute this result back into Equation 32, which then yields an
equation for the fold-change as a function of inducer concentration. Specifically, we have
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Figure 12

States and weights for the binding of inducer to repressor. The top two states correspond to active
conformations of the repressor, and the bottom two states are the inactive conformation of the repressor.
The statistical mechanical weight is written in terms of binding energies of ligand to the active (£]})

and inactive (¢]) states and the chemical potential u, which characterizes the inducer, whereas the
thermodynamic weights are written in terms of the K4 of the active (K4) and inactive (K) states and
the inducer concentration c.

1

(1 +K—2)

' (1 +K—§) +e (1 +1<_;)

fold-change = X 34.

R
K

where K} and K, are dissociation constants that characterize the binding of inducer to repressor,
and K is an effective (i.e., dimensionless) dissociation constant that characterizes the binding of
the active repressor to DNA.

We can rewrite the fold-change in a particularly interesting way that provides an opportunity
for data collapse of broad collections of data from different mutants, as already shown in the
settings of both chemotaxis and quorum sensing (62, 63). Specifically, we rewrite the fold-change

in the form
fold-ch - 35
old-change = - o .
where F(c) is defined as
R
F(c) = —kBT(logE + logpA(c)). 36.

This can be rewritten as
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R
F(c) = —kgT logE + log (1 +%) +eiﬁ{(1 +L{) , 37.
K Kl

which is a parameter that I call the Bohr parameter because it is inspired by the families of binding
curves seen in the binding of oxygen to hemoglobin. It is of interest to see to what extent our ideas
will shed light on gene expression measurements.

Mutants have served as one of the most important windows to biological function. Further,
different repressor mutants have been used to great effect for uncovering the allosteric properties
of transcription factors (68). Recently, these strategies have been converted from a genetic tool into
a biophysical tool. I like to think of this in much the same way that recent advances in condensed
matter physics have been so tightly coupled to, for example, amazing advances in synthesizing new
materials with all sorts of different magnetic and superconducting properties. And just as each new
such material does not require an entirely new theory, neither does each of our mutants require
some new theoretical description. Part of the distraction that is offered by a strictly structural view
of allosteric molecules is that it focuses attention on the relative positions of different residues and
ligands without pushing for a unifying perspective on all mutants at once. It is our hope that by
virtue of the connection to the MW C framework, mutants can now be seen, for example, as arising
either because of changes in free energy between the active and inactive states or through changes
to the binding affinity of the inducer in the active and inactive states. Regardless of mutant type, the
ambition is to exploit the same underlying mathematical description as a conceptual framework
for explaining why the molecules behave the way they do and as a predictive framework for
suggesting interesting new experiments.

Many transcription factors are more complicated than the monomeric repressors considered in
Figure 12. For example, consider a repressor such as that shown in Figure 13 that has two binding
sites for inducers. In this case, our states and weights need to be expanded to account for the four
distinct bound states corresponding to both the inactive and active states of the molecule. Given the
states and weights, we can write the probability of the active state as

(1+5)
palc) = . 38.
AC (1 +K—Cg)2+e*ﬁf(1 +Kib)z

As before, we can also use this in the context of Equations 35 and 36 to write the fold-change
itself as

1
2
(1 +Ki3)
(1 +KLQ)2 +e*3€(1 +KLL)2

where the formula is nearly identical to that provided in Equation 34, with the difference being that

fold-change =

14

==

the terms involving the inducer concentration are squared, reflecting the fact that there are two
binding sites for the inducer.
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Figure 13

States and weights with an inducer that can bind at two sites on the repressor molecule. The notation is the same
as that presented in Figure 12.

Although interesting as a statistical mechanical exercise, all of these abstractions are compel-
ling only if they can tell us something about real experimental situations. The story of modern gene
regulation owes much to the story of lactose metabolism in E. coli. In particular, in the heroic series
of experiments in which the Lac repressor molecule was systematically mutated in order to de-
termine which parts of the protein are responsible for DNA binding, for tetramerization, for
inducer binding, and so on, the groundwork was laid for exploring repression as an allosteric
phenomenon. Recently, this work has come full circle back to the systematic, quantitative in vivo
study of regulation with a series of mutant repressor molecules (68, 69). The idea is to examine the
response of a promoter controlled by the Lac repressor as a function of inducer concentration for
a family of mutants of different kinds (68). Examples of the kind of data considered are shown in
Figure 14. In this case, in addition to the wild-type repressor, the two mutants shown each have
a single amino acid change in their DNA binding domain that alters the affinity of the repressor for
DNA. From the standpoint of Equation 39, what this means is that all three data sets should be
described by precisely the same parameters (i.e., &, K4, and K!)), with the exception of K, which
characterizes the repressor-DNA interaction.

As noted above, the goal of the kinds of equilibrium models described in this article is to provide
a unifying perspective on broad classes of biological phenomena in a way that suggests new
experiments. We continue our analysis of the Lac repressor mutant data by examining the extent to
which the data-collapse mentality suggested by Equation 37 can be brought to bear on this problem.
As seen in Figure 14b, the idea that all three data sets can be viewed from the point of view of the
MWC framework is very appealing. Interestingly, altering the DNA binding strength causes the side
effect of changes to the leakiness of the circuit as well as its dynamic range (59, 60).
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Figure 14

Gene expression from mutant repressors. (a) Experimental induction curves for wild-type Lac repressor
and DNA-binding-domain mutants (68). Curves correspond to fits using Equation 39, where the only
parameter that differs from one curve to the next is K, the effective dissociation constant for binding of active repressor
to DNA. (b) Data collapse showing how the expression data for different repressor mutants collapse onto

a single master curve by plotting expression data with respect to the Bohr parameter implied by Equation 39.

4. CONCLUDING PERSPECTIVE

Living organisms exhibit surprising phenomena at every turn, many of which nearly defy the
imagination. That said, experimental advances in biology are unlocking secrets in a way that I
would liken to the explosion of our understanding of the heavens after the telescope was invented.
Despite the vast quantities of data generated about biological systems, the debate continues as to
the extent to which our description of these systems can be quantitative and predictive, with an
implicit implication that there might be things about living organisms that cannot be understood
on the basis of physical law alone. The concept of this article has been to use several specific case
studies illustrating how one particular approach to a class of molecular problems, namely sta-
tistical mechanics, provides guideposts for formulating a quantitative description of molecular
actions and their resulting biological function. A second concept has been to begin to examine the
limits and validity of these approaches and to ask what might be the kinds of new physics that will
be needed to tackle these systems, which are characterized by a variety of challenges that make
their statistical physics so hard: They have spatial and chemical heterogeneity, they are out of
equilibrium, they exhibit sensitive dependence on single amino acid changes in the molecular

Figure 15

The sagging of a lead pipe on long timescales. Reprinted with permission from Reference 70.

Phillips



Annu. Rev. Condens. Matter Phys. 2015.6:85-111. Downloaded from www.annualreviews.org
Access provided by California Institute of Technology on 03/24/15. For personal use only

substrates (i.e., enormity of space of mutants and their phenotypes), there is a strong degree of
macromolecular crowding, etc.

At the deepest level, the knee-jerk reaction that rejects the use of statistical mechanics to de-
scribe cellular phenomena is right. Napoleon is in equilibrium. But these same kinds of worries
apply in more mundane situations, such as in the use of Newton’s First Law of Motion as a de-
scription of the equilibrium of a lead pipe in an old building (see Figure 15). Although such a pipe is
clearly in mechanical equilibrium on short timescales, over longer timescales the process of creep
results in permanent deformation as the pipe flows. Of course, the question of how to handle
dynamics on the many different timescales that characterize biological systems is far trickier than
in the context of mechanical creep of inanimate matter.

The use of statistical mechanical models like those discussed here is by no means limited to the
analysis of transcription. A long list of examples from across biology have been subjected to the
same kind of state and weight analysis given here, including the behavior of ion channels of all
kinds, membrane receptors that mediate quorum sensing or bacterial chemotaxis, the distribution
of proteins such as histones, polymerases, and transcription factors across genomes (as evidenced
by a variety of recent sequencing methods), the accessibility of nucleosomal DNA, and beyond (64,
71, 72).

Even when not in equilibrium, many of these systems can be thought of as occupying distinct,
identifiable states, and what they do functionally at a given instant depends upon which state they
are in and on the rates of transitions between these states. Even in those cases, we are still faced
with the same fundamental question from statistical physics: What are the probabilities? The
simplest answer (null model) to that problem is that those probabilities are determined by
Boltzmann and Gibbs distributions, but at best this represents a first approximation to the truth of
how such systems behave. As shown here, the kinetic theory of transcription provides a second
route to these probabilities, which, at least in some cases, are mathematically equivalent to those
obtained from the statistical mechanical models. As future generations of researchers come to
terms with the “test tube of the twenty-first century,” statistical physics will enrich and be enriched
by the study of living matter.
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